Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis.
نویسندگان
چکیده
Arbuscular mycorrhizae are ancient symbioses that are thought to have originated >400 million years ago in the roots of plants, pioneering the colonization of terrestrial habitats. In these associations, a key process is the transfer of phosphorus as inorganic phosphate to the host plant across the fungus-plant interface. Mycorrhiza-specific phosphate transporter genes and their regulation are conserved in phylogenetically distant plant species, and they are activated selectively by fungal species from the phylum Glomeromycota. The potato phosphate transporter gene StPT3 is expressed in a temporally defined manner in root cells harboring various mycorrhizal structures, including thick-coiled hyphae. The results highlight the role of different symbiotic structures in phosphorus transfer, and they indicate that cell-cell contact between the symbiotic partners is required to induce phosphate transport.
منابع مشابه
Dynamics of periarbuscular membranes visualized with a fluorescent phosphate transporter in arbuscular mycorrhizal roots of rice.
In arbuscular mycorrhizal (AM) symbiosis, host plants supply photosynthates to AM fungi and, in return, they receive inorganic nutrients such as phosphate from finely branched fungal arbuscules. Plant cortical cells envelope arbuscules with periarbuscular membranes that are continuous with the plant plasma membranes. We prepared transgenic rice (Oryza sativa) plants that express a fusion of gre...
متن کاملNonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the phosphate transporter1 gene family.
Pi acquisition of crops via arbuscular mycorrhizal (AM) symbiosis is becoming increasingly important due to limited high-grade rock Pi reserves and a demand for environmentally sustainable agriculture. Here, we show that 70% of the overall Pi acquired by rice (Oryza sativa) is delivered via the symbiotic route. To better understand this pathway, we combined genetic, molecular, and physiological...
متن کاملA phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi.
Many plants have the capacity to obtain phosphate via a symbiotic association with arbuscular mycorrhizal (AM) fungi. In AM associations, the fungi release phosphate from differentiated hyphae called arbuscules, that develop within the cortical cells, and the plant transports the phosphate across a symbiotic membrane, called the periarbuscular membrane, into the cortical cell. In Medicago trunc...
متن کاملLive-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis.
In the arbuscular mycorrhizal symbiosis, the fungal symbiont colonizes root cortical cells, where it establishes differentiated hyphae called arbuscules. As each arbuscule develops, the cortical cell undergoes a transient reorganization and envelops the arbuscule in a novel symbiosis-specific membrane, called the periarbuscular membrane. The periarbuscular membrane, which is continuous with the...
متن کاملPhosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters.
Plant interactions with arbuscular mycorrhizal fungi have long attracted interest for their potential to promote more efficient use of mineral resources in agriculture. Their use, however, remains limited by a lack of understanding of the processes that determine the outcome of the symbiosis. In this study, the impact of host genotype on growth response to mycorrhizal inoculation was investigat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 16 شماره
صفحات -
تاریخ انتشار 2004